The subduction of the Nazca plate beneath South America constitutes the major tectonic characteristic in Peru. According to magnetic and geodetic data, the Nazca plate is continuously moving north-eastward (azimuth 78 degress )with an average velocity of 6 cm/yr (DeMets et al., 1990; Norabuena et al., 1999). This rapid convergence causes a high seismic coupling along the subduction interface giving raise to the occurrence of interplate and intraplate earthquakes with different magnitudes and depths. As a result of this process, different geomorphological structures and tectocni features have been created such as: the Peru-Chile trench, the Andean cordillera, the volcanic chain and fault systems. In case of the fault systems those are also sources of seismicity but of lower magnitudes. The figure shows all these features.
- The Peru-Chile trench: is a structure emplaced parallel to the Peruvian coast with a distance of about 160 km from the coast, bordering the contact between the Nazca plate and the South America plate.
- The Andean cordillera: the most obvious tectonic feature product of the continuous interaction of the Nazca plate, covers an area of 7,500 km, with heights of 6,000 m and higher. The volcanic chain is located in the southern part of Peru from 14º N to 25º S in Chile. Finally, fault systems are result of the deformation in the continental crust due to subduction process.
Different authors have proposed that the subduction zone could be divided into three zones according to its seismic activity (North, Central and South), this zones might be separated by two prominent geomorphologic features on the subduction plate: the Mendana fracture zone (10ºS) and the Nazca ridge (15ºS). The Nazca ridge location is considered as a barrier of rupture propagation as observed in the last Pisco earthquake (Mw8.0) in 2007 (Perfettini et al., 2010; Sladen et al., 2010). However, Okal et al. (2006), using tsunami simulations for the 1868 and 1687 events suggest that the Nazca ridge appears more like a hurdle than a barrier serving as a rupture barrier for certain events such as the 1604 event for the south and 1746 event to the north. Moreover, this feature is considered as a transition between a flat subduction zone to the north and a subduction steeply dipping to the south, with different azimuth of the shore line and seismicity activity (Okal et al., 2006; Sladen et al., 2010). The Mendana fracture zone is considered as a transition zone with a difference crustal age of about 10 Myr between north of the Mendana fracture zone and off the central and south of Peru (Muller et al., 1997).
- The volcanic chain: Located in the south of Peru from 14º S to 25º S in Chile. This chain is distributed along the Andean cordillera following an aparent linearity on NW-SE direction. Among the main volcanoes located in southern Peru: Coropuna (6425 m), Sabancaya (5795 m), Misti (5825 m), Ubinas (5672 m.), Chachani (3745 m.), Huaynaputina (4800 m.), Tutupaca (5806 m.), Yucamane (5508 m.). In northern and central Peru volcanic activity have disappeared approximately 8 Ma, due to changes in the form of the subduction process (Moroco 1980).
- The fault systems: are result of constant deformation process in the continental crust due to the subduction process. These faults are present in great number, from North to South along Sub-Andean zone and the eastern side of the Andes Mountains creating major folds in the contact with the Brazilian Shield. The main fault systems located in Peru are: Alto Mayo (AM), Satipo (SA), Madre de Dios (MD), in less proportion located on the high Cordillera and the Altiplano: the Cordillera Blanca (CB), Huaytapallana (HU), Tambomachay (TM). All fault systems owe their origin to a heterogeneous distribution of tensional and compressional efforts within thecontinent (James, 1978).
Espacio dedicado a temas relacionados con las ciencias: Geofísica, Sismología, Geodesia entre otros...
domingo, 9 de octubre de 2011
viernes, 9 de septiembre de 2011
VIDEO: El gran terremoto de Tohoku: premonitores, sismo principal y réplicas
Si bien el sismo de Tohoku ocurrido el 11 de marzo de 2011alcanzó una gran magnitud 9.1Mw, este sismo fue precedido por un precursor de magnitud 7.2Mw el día 9 de Marzo. La animación posteada por Nathan B. (investigador del Pacific Tsunami Warning Center) muestra en 4 minutos (equivalentes al periodo de enero a Septiembre) la distribución espacio-temporal de los eventos premonitores, evento principal y réplicas de este gran sismo. Al observar la actividad sismica durante estos nueve meses se aprecia que durante los primeros meses la actividad sismica de fondo es normal o típica de la región, luego al producirse el evento premonitor le suceden el sismo principal y la serie de replicas que terminan por completar y estabilizar el área de ruptura del sismo. De este contexto se puede desprender que el evento premonitor del 9 de Marzo corresponde a lo que los autores que estudian el ciclo sismico denominan etapa de carga o fase pre-sismica, luego el sismo principal del 11 de Marzo corresponde a la etapa en la que se libera la energia sismica usualmente denominada fase co-sismica y finalmente la serie de réplicas que al parecer a la fecha aún no cesan corresponde a la etapa de relajación denominada fase post-sismica.
En el video cada segundo corresponde aproximadamente a 1 día, y la magnitud de los sismos se presenta en escala logaritmica.
domingo, 4 de septiembre de 2011
Debris avalanche simulation
This experiment has been done at IGP in Aug. 2011. The ingredients used were: Honey, fine sugar, sugar and little bit of patience... :-)
martes, 16 de agosto de 2011
earthquake classification according to its magnitude
Earthquakes are result of a sudden release of energy that creates seismic waves. Energy released from earthquakes includes (1) energy dissipated as heat through friction and (2) energy elastically radiated through the earth. Only the radiated energy can be measured since it propagates and shakes the earth surface.
Depending on their magnitude earthquakes are classified from minor to great:
CLASS MAGNITUDE
Great --> 8 or more
Major --> 7 to 7.9
Strong --> 6 to 6.9
Moderate --> 5 to 5.9
Light --> 4 to 4.9
Minor --> 3 to 3.9
An approximated estimation of the number of earthquakes per year, its magnitude and effects:
Magnitude Earthquake Effects Estimated Number
2.5 or less Usually not felt, 900,000
2.5 to 5.4 Often felt, minor damage. 30,000
5.5 to 6.0 Slight damage to structures. 500
6.1 to 6.9 Damage in populated areas. 100
7.0 to 7.9 Serious damage. 20
8.0 or greater Collapse of towns. One every 5 to 10 years
martes, 26 de julio de 2011
1D VELOCITY MODEL FOR NORTHERN PERU USING LOCAL EARTHQUAKE DATA
We compute a new 1D velocity model for northern Peru by inverting the arrival times of P and S waves. We follow the methodology based on the non-linear inversion using the Veslest algorithm. We use 1593 local earthquakes recorded during six years (1996-2001) by a local seismic network. The inversion was carried out using 2897 arrivals of P and S waves, corresponding to 547 earthquakes. We evaluated several models considering different velocities and thicknesses layer, this process allowed us to obtain 12 well-defined models that were re-evaluated through the earthquakes relocation. We selected a model that which showed reduction in the location and the root mean square (rms).
The 1D velocity model that we propose consists of six layers with velocities of Vp = 5.66 km/s for the first layer, to 7.92 km/s for the last one. This model defines the boundary between the crust and mantle (Mohorovicic) at a depth of 45 km below our study area. The earthquake relocation shows a better distribution of hypocenters in surface and depth and also shows a reduction of 35% in the rms values. This model constitutes a major contribution to the knowledge of the structure velocity in northern Peru and can be used as a reference in software for earthquake location, as well as in seismicity, tectonics and seismic risk studies in northern Peru.
Published in: Boletín de la Sociedad Geologica del Perú
The 1D velocity model that we propose consists of six layers with velocities of Vp = 5.66 km/s for the first layer, to 7.92 km/s for the last one. This model defines the boundary between the crust and mantle (Mohorovicic) at a depth of 45 km below our study area. The earthquake relocation shows a better distribution of hypocenters in surface and depth and also shows a reduction of 35% in the rms values. This model constitutes a major contribution to the knowledge of the structure velocity in northern Peru and can be used as a reference in software for earthquake location, as well as in seismicity, tectonics and seismic risk studies in northern Peru.
Published in: Boletín de la Sociedad Geologica del Perú
martes, 31 de mayo de 2011
Potencial para la ocurrencia de Grandes Sismos en el back-arco de los Andes Centrales
Los grandes sismos (M>8) que se producen a lo largo del borde occidental de la cordillera andina son repetitivos en el tiempo (entre 150 y 200 años) por tanto su ocurrencia es de por si esperada. Recientemente medidas geodésicas de la cinemática superficial a lo largo del limite oriental de la cadena sub-andina han evidenciado el potencial que presenta esta zona (ante-país) para la ocurrencia de un gran sismo.
El margen occidental de la Cordillera de los Andes constituye una zona de subducción de placas activas (Nazca-Sudamericana). Como resultado de ello, los sismos de magnitudes mayores superiores a Mw 8.0 son fenómenos de relativa frecuencia. Por el contrario, en el margen oriental andino la ocurrencia de sismos ha sido hasta ahora pre-supuesta a alcanzar magnitudes máximas de Mw 7.5. Recientemente Brooks et al (2011), han reportado que un gran segmento de falla que sobreyace los Andes bolivianos se encuentra sísmicamente acoplada y podría ser generadora de un sismo de magnitud superior a Mw 8.7, 8.9.
El tamaño de un sismo es directamente proporcional al área de la falla que se desliza durante su ocurrencia. Una falla que forma un ángulo bajo con la superficie de la tierra, corta una parte relativamente grande de la corteza frágil antes de alcanzar niveles de profundidad en el que las rocas, a causa del gradiente geotérmico, se comportan de manera dúctil y por ende son menos capaces de almacenar y liberar energía mediante los sismos. De esto se desprende que las fallas de ángulos superficiales tienen un mayor potencial para producir un gran sismo que aquellas fallas que buzan de manera mas profunda cuya cross-sección con la capa frágil de la corteza es mucho más pequeña. Si un segmento de falla esta acoplado y no puede deslizarse libremente, la energía elástica, creada por los dos segmentos de la corteza terrestre que intentan moverse uno respecto al otro, es almacenada en esta porción de falla que no se desliza. Un parámetro crítico en el estudio de los grandes sismos es documentar el área de la falla que se encuentra acoplada y estimar la cantidad de energía que dicha área liberará a través de un terremoto.
La convergencia entre la placa oceánica de Nazca y la continental Sudamericana ha producido durante los últimos 40 millones de años el plegamiento y fallamiento del margen oeste de Sudamérica, dando lugar a la cadena de montañas Andina. Hoy en día, esta contracción se acomoda mediante un movimiento de los Andes bolivianos respecto al cratón brazileño, a lo largo de una falla que sobreyace la parte oriental de los Andes (ver Figura). De manera más especifica, la cadena andina del sur de Bolivia presenta un movimiento hacia la parte interna y estable del continente a una tasa de 7-10 mm/yr. Si bien es cierto que los Andes se extienden a lo largo de toda Sudamérica, existen zonas más amplias en el sur de Perú, sur-oeste de Bolivia y norte de Chile, que permite suponer que la falla que sobreyace este segmento es probablemente más extensa en esta zona. Para evaluar el potencial del peligro sísmico asociado a esta falla, resulta crucial conocer/estimar la porción de falla que se encuentre acoplada en la zona frágil de la corteza.
Brooks et al., (2011) utilizan datos GPS para medir el movimiento de la superficie en los Andes del sur de Bolivia hacia la parte estable de Sudamérica. Los Autores muestran que las velocidades GPS medidas son bien explicadas por un modelo de falla que buza hacia el oeste con un angulo superficial inferior a los 5 grados. Los autores muestran que la falla se desliza a una tasa de 9-13 mm/yr en el oeste, pero que esta acoplada en el este en un segmento de ~85-100 km acumulando energia elastica. El hecho de conocer la distancia del segmento de falla que se encuentra acoplado constituye un parámetro esencial para determinar el tamaño de algún terremoto potencial. Esta distancia observada es equivalente a las que se estimaron para los Himalaya y en donde se ha inferido habrían ocurrido sismos de magnitud superior a Mw 8.4.
Otro parámetro importante para estimar el tamaño potencial de los sismos es la longitud que puede sufrir ruptura a lo largo de la interfaz de falla acoplada. Si una falla estuviese dividida en varios segmentos, la ruptura en lugar de producirse a través de una gran terremoto, se produciría en partes individuales que podrían romperse de manera separada a través de pequeños sismos. Brooks el al., utilizaron datos de topografía de alta resolución para identificar expresiones superficiales de las probables fallas acopladas en la región. Los autores proponen que las áreas que presentan relieves altos denotan segmentos de falla que se han movido durante los sismos (es decir segmentos individuales desplazados por diferentes sismos), mientras que las regiones de bajo relieve indican el límite de dichos segmentos. A partir de este análisis topográfico los investigadores encontraron que la falla estaría dividida en cinco segmentos diferentes. De esta manera, si se tiene una estimación de la longitud y el ancho de cada segmento de falla es posible utilizar las relaciones/leyes de escala para los terremotos y estimar el tamaño potencial del sismo que podría estar asociado a cada segmento de la falla. Así, los autores estimaron que cada segmento individual de la falla podría sufrir ruptura con sismos de magnitudes entre 7.2-8.3 Mw. Sin embargo, en el peor escenario, si todos los segmentos de falla sufren ruptura en conjunto se esperaría un sismo de hasta 8.9 Mw.
Otro parametro a tomar en cuenta para conocer el potencial sísmico de una falla es saber cuan a menudo ésta se desliza. Si se desliza de manera regular los esfuerzos se liberan gradualmente mediante sismos de baja magnitud y no a través de un solo gran evento de características destructivas. Desafortunadamente no se tiene información sobre la tasa de deslizamientos de las fallas en frente oriental de los Andes Bolivianos, asimismo no se han registrado sismos de magnitudes mayores a 7Mw en esta región, por lo que se deduce que los esfuerzos se vienen acumulando desde ~1700, que es cuando se iniciaron algunas observaciones. Este periodo de acumulación tan largo incrementa el potencial de un sismo de magnitud Mw7.0 o mayor.
A raíz de los grandes terremotos acontecidos en Haiti, Chile y Japon en los dos últimos años este estudio pone en evidencia que algunas áreas de la cadena andina, que por lo general no están asociadas con actividad sísmica y/o riesgo sísmico, podrían potencialmente ser escenario de eventos catastróficos.
Otras áreas como en norte de Perú, donde no se tiene registro de la ocurrencia de sismos grandes (M>8) en los últimos siglos destacan y ponen en evidencia que es necesario llevar a cabo este tipo de estudio a fin de conocer y mitigar el riesgo sísmico.
Referencias: Brooks et al (2011); McQuarrie (2011), ambos en nature Geosciences.
El margen occidental de la Cordillera de los Andes constituye una zona de subducción de placas activas (Nazca-Sudamericana). Como resultado de ello, los sismos de magnitudes mayores superiores a Mw 8.0 son fenómenos de relativa frecuencia. Por el contrario, en el margen oriental andino la ocurrencia de sismos ha sido hasta ahora pre-supuesta a alcanzar magnitudes máximas de Mw 7.5. Recientemente Brooks et al (2011), han reportado que un gran segmento de falla que sobreyace los Andes bolivianos se encuentra sísmicamente acoplada y podría ser generadora de un sismo de magnitud superior a Mw 8.7, 8.9.
El tamaño de un sismo es directamente proporcional al área de la falla que se desliza durante su ocurrencia. Una falla que forma un ángulo bajo con la superficie de la tierra, corta una parte relativamente grande de la corteza frágil antes de alcanzar niveles de profundidad en el que las rocas, a causa del gradiente geotérmico, se comportan de manera dúctil y por ende son menos capaces de almacenar y liberar energía mediante los sismos. De esto se desprende que las fallas de ángulos superficiales tienen un mayor potencial para producir un gran sismo que aquellas fallas que buzan de manera mas profunda cuya cross-sección con la capa frágil de la corteza es mucho más pequeña. Si un segmento de falla esta acoplado y no puede deslizarse libremente, la energía elástica, creada por los dos segmentos de la corteza terrestre que intentan moverse uno respecto al otro, es almacenada en esta porción de falla que no se desliza. Un parámetro crítico en el estudio de los grandes sismos es documentar el área de la falla que se encuentra acoplada y estimar la cantidad de energía que dicha área liberará a través de un terremoto.
La convergencia entre la placa oceánica de Nazca y la continental Sudamericana ha producido durante los últimos 40 millones de años el plegamiento y fallamiento del margen oeste de Sudamérica, dando lugar a la cadena de montañas Andina. Hoy en día, esta contracción se acomoda mediante un movimiento de los Andes bolivianos respecto al cratón brazileño, a lo largo de una falla que sobreyace la parte oriental de los Andes (ver Figura). De manera más especifica, la cadena andina del sur de Bolivia presenta un movimiento hacia la parte interna y estable del continente a una tasa de 7-10 mm/yr. Si bien es cierto que los Andes se extienden a lo largo de toda Sudamérica, existen zonas más amplias en el sur de Perú, sur-oeste de Bolivia y norte de Chile, que permite suponer que la falla que sobreyace este segmento es probablemente más extensa en esta zona. Para evaluar el potencial del peligro sísmico asociado a esta falla, resulta crucial conocer/estimar la porción de falla que se encuentre acoplada en la zona frágil de la corteza.
Brooks et al., (2011) utilizan datos GPS para medir el movimiento de la superficie en los Andes del sur de Bolivia hacia la parte estable de Sudamérica. Los Autores muestran que las velocidades GPS medidas son bien explicadas por un modelo de falla que buza hacia el oeste con un angulo superficial inferior a los 5 grados. Los autores muestran que la falla se desliza a una tasa de 9-13 mm/yr en el oeste, pero que esta acoplada en el este en un segmento de ~85-100 km acumulando energia elastica. El hecho de conocer la distancia del segmento de falla que se encuentra acoplado constituye un parámetro esencial para determinar el tamaño de algún terremoto potencial. Esta distancia observada es equivalente a las que se estimaron para los Himalaya y en donde se ha inferido habrían ocurrido sismos de magnitud superior a Mw 8.4.
Otro parámetro importante para estimar el tamaño potencial de los sismos es la longitud que puede sufrir ruptura a lo largo de la interfaz de falla acoplada. Si una falla estuviese dividida en varios segmentos, la ruptura en lugar de producirse a través de una gran terremoto, se produciría en partes individuales que podrían romperse de manera separada a través de pequeños sismos. Brooks el al., utilizaron datos de topografía de alta resolución para identificar expresiones superficiales de las probables fallas acopladas en la región. Los autores proponen que las áreas que presentan relieves altos denotan segmentos de falla que se han movido durante los sismos (es decir segmentos individuales desplazados por diferentes sismos), mientras que las regiones de bajo relieve indican el límite de dichos segmentos. A partir de este análisis topográfico los investigadores encontraron que la falla estaría dividida en cinco segmentos diferentes. De esta manera, si se tiene una estimación de la longitud y el ancho de cada segmento de falla es posible utilizar las relaciones/leyes de escala para los terremotos y estimar el tamaño potencial del sismo que podría estar asociado a cada segmento de la falla. Así, los autores estimaron que cada segmento individual de la falla podría sufrir ruptura con sismos de magnitudes entre 7.2-8.3 Mw. Sin embargo, en el peor escenario, si todos los segmentos de falla sufren ruptura en conjunto se esperaría un sismo de hasta 8.9 Mw.
Otro parametro a tomar en cuenta para conocer el potencial sísmico de una falla es saber cuan a menudo ésta se desliza. Si se desliza de manera regular los esfuerzos se liberan gradualmente mediante sismos de baja magnitud y no a través de un solo gran evento de características destructivas. Desafortunadamente no se tiene información sobre la tasa de deslizamientos de las fallas en frente oriental de los Andes Bolivianos, asimismo no se han registrado sismos de magnitudes mayores a 7Mw en esta región, por lo que se deduce que los esfuerzos se vienen acumulando desde ~1700, que es cuando se iniciaron algunas observaciones. Este periodo de acumulación tan largo incrementa el potencial de un sismo de magnitud Mw7.0 o mayor.
A raíz de los grandes terremotos acontecidos en Haiti, Chile y Japon en los dos últimos años este estudio pone en evidencia que algunas áreas de la cadena andina, que por lo general no están asociadas con actividad sísmica y/o riesgo sísmico, podrían potencialmente ser escenario de eventos catastróficos.
Otras áreas como en norte de Perú, donde no se tiene registro de la ocurrencia de sismos grandes (M>8) en los últimos siglos destacan y ponen en evidencia que es necesario llevar a cabo este tipo de estudio a fin de conocer y mitigar el riesgo sísmico.
Referencias: Brooks et al (2011); McQuarrie (2011), ambos en nature Geosciences.
Suscribirse a:
Entradas (Atom)